
MASTERING LINUX

apcmag.com  mastering linux  part 111

MASTERING LINUX

  part 11 2

scripting and customisation

Mastering Linux, part 11

The scripting methods demonstrated in last

month’s instalment of the Mastering Linux series

are fine if you need to execute commands in a

strictly linear fashion. What wasn’t shown was

how to use control structures and conditional

statements to alter the behaviour of your script

under certain circumstances.

IF THEN ELSE
The if-then-else control structure will be familiar

to anyone who has done any kind of programming

or scripting. Shell scripts also support this most

basic of control structures. Broken down, this

control structure executes certain commands

if a condition is true, otherwise it executes another

set of commands:

if [$CONDITION = alpha]; then

echo "This code is executed if $CONDI-
TION is identical to alpha."

elif [$CONDITION = beta]; then

echo "This code is executed if $CONDI-
TION is identical to beta."

else

echo "This code is executed if $CONDI-
TION is neither alpha or beta."

fi

This example shows how if-then-else structures

work. Note the location of the brackets ([]), which

are there to tell the shell what the test expression is.

They also stop the shell from assigning the test value

to the variable. Also note the required semi-colon (;)

after the test expression.

The test expression is not strictly limited

to “identical” comparisons. The table below

shows some of the other expressions that are

frequently used:

Expression Definition

x = y True if the text value of x is identical to the text value of y

x != y True if the text value of x is not identical to the text value of
y

x -gt y True if the numeric value of x is greater than the numeric
value of y

x -lt y True if the numeric value of x is lesser than the numeric
value of y

In this month’s instalment of the Mastering Linux series,

Jarrod Spiga delves deeper into scripting and shows you how

to customise the X-Windows desktop.

Customising the desktop


The KDE Control Center is the one-stop shop for all of your settings The KDE Control Center is the one-stop shop for all of your settings
customisations.1

By now, you’ve probably

customised the way your

desktop looks and behaves.

After all, the default settings After all, the default settings

won’t suit the way that won’t suit the way that

everyone uses their Linux

systems. Some customisation

is required in order for you to

work more efficiently within work more efficiently within

X-Windows — and it doesn’t X-Windows — and it doesn’t

hurt to jazz up the look of

things while you’re at it.things while you’re at it.

If you use GNOME, most

of the settings for your

desktop can be found under

the GNOME > Preferences the GNOME > Preferences

menu. From KDE, click KDE

> Control Center.
1 Instead of displaying Instead of displaying

your options in a menu, your options in a menu,

KDE’s Control Center has an

expandable tree that

contains all of your

customisation options.

WINDOW APPEARANCE
One of the quickest ways to

make a drastic alteration to your

desktop’s looks is to change the

theme currently being applied

to the Window Manager. The

theme preferences dialog

can be brought up by

double-clicking on the Theme

icon in GNOME’s Control Center,

or under Appearance and

Themes > Window Decorations

if you’re using KDE.

A decent range of

decorations is installed by

default, and it’s even possible to

combine elements from a couple

of different themes to display at

once. This is fairly intuitive if

you’re using KDE — especially if

you also browse through the

various colour schemes under

Appearance & Themes > Colors.

But if GNOME is your

Skill level
Intermediate

Requirements
An installation of Linux
(Fedora Core 3 was used in
the writing of this article)

Time to complete
2 hours

Bonus DVD software

PDFs of every instalment of
the Mastering Linux series.

MASTERING LINUX

  part 111

MASTERING LINUX

apcmag.com  mastering linux  part 11 2

scripting and customisation

x -eq y True if the numeric value of x is equal to the
numeric value of y

-e value True if a filesystem object by the name of value
exists

-f value True if a file by the name of value exists (not a
directory, link, etc)

-d value True if a directory by the name of value exists

-x value True if the file by the name of value has
executable permissions

The optional elif command can also be used

to modify the test expression to check if it

meets some different criteria, and is an

abbreviation of else-if. Similarly, the else-if. Similarly, the else-if else

command is also optional and the code

contained within this sub-structure will only

be executed if no other test expression has

been true.

You must include the fi command at the

end of each structure, as this informs the shell

that the structure is closed.

To make your script easier to read and

debug, it’s a good idea to use indents to

separate sections of the control structure,

especially when working with multiple,

nested if-then-else control structures. Nested

structures give you more control, but get

increasingly complicated to work with as

your script grows — especially if you forget

the fi command in one of your structures.

It’s usually more efficient to use case

control structures.

CASE BY CASE
The case control structure works by comparing

many values to a variable. If a match is found,

the set of commands in that branch of the

structure are executed, and then the structure

is terminated. If no match is found, the default

case (if one exists) is assumed true. The case

structure looks like the following:

case "$VALUE" in

'0')

echo "This is executed if $VALUE is
identical to 0";

;;

'1')

echo "This is executed if $VALUE is
identical to 1";

;;

*)

echo "This is executed as the
default case if no other test holds
true";

;;

esac

Case structures are ideal when writing a

script that manages services or daemons. For

instance, the following snippet of code will

start or stop a daemon by calling one of two

different scripts. It will also inform the user of

the correct syntax for the script should the

user enter incorrect arguments:

#!/bin/bash

case "$1" in

'start')

~/scripts/startup-script

;;

'stop')

~/scripts/shutdown-script

;;

*)

echo "Usage: $0 [start|stop]"

;;

esac

AROUND IN LOOPS
The most basic of loop structures is the while

loop. It’s constructed in a similar manner to

if-then-else, but it continues to loop through

the list of commands in the structure while

the test condition holds true:

while [$CONDITION = true]; do

echo "This code is executed in the
while loop."

don’t forget to include code that
modifies the value of $condition

environment of choice, it’s a little

tricky. It involves you selecting a

base theme and then clicking on

the Theme Details button. From

there, you can choose different

themes for your controls, window

borders and icons.

If you can’t find a theme

that you truly like, head on over to

http://themes.freshmeat.net
and download some of the

user-contributed themes.

Installation instructions are

usually supplied with each theme.

WALLPAPER
2 Everyone likes to have their Everyone likes to have their

own desktop wallpaper displayed

beneath their icons and windows.

If you’re using GNOME, you

can change your wallpaper by

selecting Desktop Background.

To select your background image,

click on the button underneath

where it says Select picture.

You will then see the list of

images stored at /usr/share/

backgrounds/images, but it’s

pretty easy to navigate to the

location where your desired

background is stored.

In KDE, the settings are

under Appearance & Themes

> Background and you can

select your background image

from under the Wallpaper tab.

KDE also gives you the choice

of setting a different wallpaper

for each of the virtual desktops

that are running — simply

deselect the Common

background checkbox. You can

also specify multiple wallpapers if

you wish, and KDE will

automatically change the

background at a frequency that

you can define under the Setup

Multiple. . . button.

RESOLUTIONS AND REFRESH
If you’re using a CRT screen, you’ll

generally want to use the highest

screen refresh rate setting the

monitor can handle in order to

minimise eye-strain while using

your Linux system. If you’re

using an LCD screen, the


The default storage location for wallpapers is /usr/share/background/images. To The default storage location for wallpapers is /usr/share/background/images. To
add images from other locations, hit the Add Wallpaper button.2

MASTERING LINUX

apcmag.com  mastering linux  part 113

scripting and customisation

CONDITION = false

done

The comment line is an important reminder

— if you don’t include any code that

modifies the test variable(s) within your

while structure, the script will get stuck in

the loop and continue to execute forever

(or until you manually stop it). Using a

nested if-then-else structure in the while

structure is a good way to determine

whether the test variables actually need

changing or not.

BREAK THE CIRCLE
Conditions will undoubtedly arise when

you’ll want to stop a portion of a loop from

executing, or even stop the loop from

processing altogether. The continue

statement can be used to cause the loop

to stop executing that iteration and

proceed with the next. The break statement

can be used to immediately terminate

the loop.

The following commands should echo the

numbers 1, 2 and 4 on the screen.

val = 0

while ["$val" -lt 5]; do

val = $(($val+1))

if ["$val" -eq 3]; then

continue

fi

echo -n "$val "

if ["$val" -eq 4]; then

break

fi

done

The number 3 is not shown because the

continue statement stops the loop from

executing the echo command, forcing the

loop to start processing the next iteration.

The number 5 is not shown because the

break statement terminates the processing

of the loop before the while statement gets

to terminate.

WORKING WITH SETS
The third type of loop that you’ll encounter in

your shell-scripting endeavours is the for-do

loop. This is used when you need to perform a

number of commands for every element in a

set and is ideal for performing operations on a

group of files, such as:

for FILENAME in *.txt; do

echo "Now working on $FILENAME.."

tail -10 "$FILENAME"

done

When executed, the for statement assigns

the first value in the set to the variable: in

this case, the first .txt file is assigned to

the FILENAME variable. The done statement

lets the loop iterate, allowing for the next

value to be assigned to the variable, and so

forth until all of the values in the set have

been processed.

And on a final note, there’s no need

to use a wildcard substitution to create

your set in the for-do loop. As this

example shows:

for FILENAME in 1.txt 2.txt 3.txt;
do

you can specify each item in the set as you

go.

Next month . . .

Part 12 of the series will cover Linux
Systems Administration, focusing on
how to manage various operations
running on your Linux system. It will
also explain how to check that system
services and applications are
functioning correctly.


For security reasons, it’s wise to lock your screen shortly after your
screensaver becomes active.3

resolution should be set to

your screen’s native resolution for

the best picture quality.

The Screen Resolution

preference within the GNOME

menu allows you to customise

both of these settings. Under

KDE, the same settings can be

found under Desktop > Size &

Orientation.

If you select an unsupported

resolution and refresh-rate

combination using GNOME,

hit Enter after applying

your settings to reset them. your settings to reset them.

Under KDE, waiting 15

seconds will action the seconds will action the

settings reset.settings reset.

SCREENSAVERS
Both desktop environments

come with dozens of come with dozens of

screensavers. While monitor screensavers. While monitor

burn-in is much less of a problem

nowadays, your screensaver is

useful for securing your system

should you step away from it for should you step away from it for

a few minutes. a few minutes.

For instance, if you’re logged

in to an app using root in to an app using root

credentials and you leave your credentials and you leave your

system unattended, it’s possible

for anyone to use the resources

on your system as the root user

— even if they otherwise

wouldn’t have known the root

password.

As a result, screensavers

are often used to prevent

others from seeing what you’re

doing, and to lock the system

when idle. In order to lock

your system, ensure that the

Lock Screen After or Require

Password to Stop option is set

(depending on your

environment). The amount

of time that you specify next

to this option relates to the

number of minutes that the

screensaver is active for

before the screen is locked

(the amount of idle time

required before your screen

will lock is the Blank time, plus

the Lock Screen time).

Customising the desktop

